

What is environmental engineering?

- The application of science and engineering principles to:
- Improve the environment (air, water, and land resources).
- Provide healthy air, water, and land for people and other organisms.
- · Remediate polluted water and land.

Environmental Engineering Topics

- Air Pollution Control
- Noise Pollution Control
 Water Pollution Control
- Water Supply
- Storm Water and Runoff Management Solid, Hazardous and Infectious Waste Management
- Pollution Prevention
- Recycling
- Industrial Hygiene and Occupational Health
- Public Health
- Laws and Regulations
- Project or Facility Environmental Impacts

Potential Professions

You can be a:

- Designer
- Planner
- Researcher
- Operator of pollution control facilities
- Professor
- Government regulatory agency official
- Manager of programs

Potential Employers

- Private consulting firms
- Universities
- Private research firms
- Testing laboratories
- Government agencies
- Manufacturing businesses
- Private businesses

Where do you work?

- Inside at a desk.
- Inside at a busy factory.
- Outside at a job site.
- In a remote location.
- Up on a roof or stack.
- In a trench, tunnel or sewer.
- Around the world in person or on the internet.
- Everywhere.

Required Training

- B.S. degree in engineering --- civil, chemical, mechanical or environmental
- M.S. Ph.D. in environmental engineering
- Post-graduate training courses.
- Professional conferences.
- Professional Engineering License (EE P.E.)
- Certifications (CHMM, BCEE, ...)

P.E. Principles & Practice Exam

- Wastewater 0
- Stormwater
- Potable Water Water Resources
- Ambient Air
- Sources of Air Pollution
- Emission Control Strategies
- Municipal Solid Waste
- Commercial and Industrial Wastes
- Hazardous Waste, Special, and Radioactive Waste
- Environmental Assessments
- Public Health and Safety

Professional Organizations

- Air & Waste Management Association
- American Academy of Environmental Engineers
- American Society of Civil, Mechanical or **Chemical Engineers**
- Pollution Control Societies

Principles and Practice of Air **Pollution Control**

- History of Air Pollution Control
- •

- Air Quality Management Ambient Air Quality Monitoring Measurement of Emissions from Stationary Sources
- Laws and Regulations
- Control of Emissions from Stationary Sources
- Control of Emissions from Mobile Sources
 - **Pollution Prevention** Compliance Monitoring and Enforcement
 - Indoor Air

Filter and Baghouse Design

Shape: Sheet, Cartridge and Bags Fabric: Polyester, Nylon, Teflon, Gore-tex Cleaning Method: Shaker, Reverse Air, Pulse-Jet Air to Cloth Ratio: = ft³ per minute flow rate / ft² filter cloth area

- = 7:1 for pulse jet type
- Cost: \$6 to 39 per ft³ per minute flow rate

Incineration Design

- Recuperative, Catalytic, Regenerative
- Size and Cost Proportional to Flow Rate
- Energy Recovery: 70 to 99%
- Temperature: 600 to 1,400+ degrees F
- Pollutant Destruction: 90 99%+
- Cost: \$8 to 33 per ft³ per minute flow rate

Control of Multiple Pollutants

Air Pollution Source	Carbon Monoxide	Nitrogen Oxides	PM _{2.5}	PM ₁₀	Sulfur Dioxide	Volatile Organic Compounds
Mobile	86%	75%	32%	32%	15%	52%
Area	6%	17%	48%	54%	29%	41%
Point	8%	8%	20%	14%	56%	8%
Total (TPY)	151,122	27,223	8,018	27,286	10,164	24,938

Pollutant Control Requirements

- Comply with emission standards by using control methods.
- 2 Comply with health standards by using computer dispersion modeling.

Dispersion

"the solution to pollution is dilution"

Gaussian distribution

- Highest concentration is the center of the plume at ground level:
 - = $Q / 2 \Pi u \sigma_y \sigma_z$
- Where:
- Q = Air Pollutant Emission Rate
- U = Hourly Wind Speed
- $\sigma_y \sigma_z$ = Vary with Weather Conditions
- Pollutant moves the same direction as the first hour.

Air Quality and Emission Standards

- Federal Clean Air Act (USEPA)
 www.epa.gov
- State Statutes and Rules (WDNR) www.dnr.state.wi.us
- Local Ordinances (Other States)

Daily Pollution Control Activities

- Continuous monitoring of stack emissions and pollution control equipment.
- Periodic tests.
- Recordkeeping and Reports.
- Inspections.

